β -Silyl Effects on the Stabilities of Carbanions and Carbon-Centered Radicals Derived from Ethyl Thionacetates, Diethyl Malonates, and Ethyl Acetoacetates

Shizhong Zhang* and Frederick G. Bordwell*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113

Received August 14, 1995[®]

The effects of an α -Me₃SiCH₂ group on the equilibrium acidities in DMSO of the acidic C–H bonds in esters, including ethyl thionacetate, diethyl malonate, and ethyl acetoacetate, were found to differ from that of an α -MeCH₂ group by less than 1 kcal/mol, pointing to little or no stabilizing effect of a β -Me₃Si group on carbanion stabilities. On the other hand, substitution of an α -Me₃-SiCH₂ group for one of the acidic hydrogen atoms in these esters to give Me₃SiCH₂CH₂C(=S)OEt, Me₃SiCH₂CH(CO₂Et)₂, and Me₃SiCH₂CH(CO₂Et)COCH₃ was found to decrease the homolytic bond dissociation energies (BDEs) of the remaining acidic C-H bonds by 7.1, 8.2, and 7.1 kcal/mol, respectively, relative to those of the parent esters and by 2.7, 4.5, and 4.4 kcal/mol, respectively, relative to the BDEs of the acidic C-H bonds in the corresponding MeCH₂-substituted esters. The differences in BDEs observed between the Me₃SiCH₂- and the MeCH₂-substituted ester derivatives are indicative of the presence of 3-5 kcal/mol C–H bond stabilizing effects of β -Me₃Si groups, relative to those of β -Me groups, on the corresponding carbon radicals. The BDE value of the acidic C–H bond in Me₃CCH₂CH₂C(=S)OEt was found to be 86.4 kcal/mol, which represents a 0.6 kcal/mol increase in BDE relative to that of the acidic C-H bond in MeCH₂CH₂C(=S)OEt. This result demonstrates the absence of a stabilizing effect of a β -tert-butyl group on an open-chain carboncentered radical. This is contrary to an *apparent* 6.4 kcal/mol C-H bond stabilizing effect of the β -tert-butyl group in 9-neopentylfluorene, relative to that in fluorene, which is attributed to the relief of steric strain in forming the radical.

Introduction

Both theory and experiment have shown that α -Me₃Si groups are less stabilizing to carbocations than alkyl groups, but generally more stabilizing than hydrogens, whereas a β -Me₃Si groups stabilizes, a carbocation.¹ On the other hand, an α -Me₃Si group stabilizes a carbanion as shown by the increases in the acidities of fluorene and PhSO₂CH₃ in DMSO upon the introduction of a Me₃Si group at the acidic site.² Information on the effect of β -Me₃Si groups on carbanion stabilities is limited, but existing evidence suggests that the effects are small.³

The evidence for stabilizing or destabilizing effects of α - or β -Me₃Si groups on radicals is less clear-cut. The bond dissociation enthalpy for the C–H bond in Me₃-SiCH₂–H has been found to be only 0.4 kcal/mol less than that in Me₃CCH₂–H,⁴ indicating that an α -Me₃Si group has little or no ability to stabilize the corresponding carbon-centered radical relative to that of an α -*t*-Bu group, and recent work in our laboratory has shown that α -Me₃Si groups usually exert small destabilizing effects on carbon-centered radicals.⁵

There is kinetic evidence from rates of hydrogen atom abstraction from Et₄C, Et₄Si, and $(n-Bu)_3$ Ge–H showing that β -silicon stabilizes a carbon-centered radical, relative to an alkyl group.⁶ The effects are small, however, and although the rate for the Me₃SiCH₂CH₂• radical was 7.1 times slower than that for the Me₃SiCH₂· radical toward (*n*-Bu)₃Ge-H, the rate for the formation of the Me₃SiCH₂-CH2 radical was only 1.2 times slower than that for the Me₃SiCH₂CH₂CH₂· radical and only about 27% slower than that for the CH₃CH₂CH₂CH₂· radical.^{6a} Kinetic effects for hydrogen atom abstraction are generally small in such radical reactions because there is relatively little bond breaking in the transition state, and the kinetics are therefore qualitative and difficult to interpret. There is also thermodynamic evidence to support the stabilizing effect of β -Me₃Si groups on carbon-centered radicals, however. Thus, the BDE of the C-H bond in Me₃SiCMe₂-CH₂–H has been found to be weaker by 3 ± 1 kcal/mol than that in $MeCMe_2CH_2-H$.⁷ (Henceforth, kcal/mol will be abbreviated as kcal.) This result indicates that a β -Me₃Si group stabilizes a carbon-centered radical by about 3 kcal, relative to that of a β -methyl group. Also, pyrolytic cleavages of the C-C bonds in GCH₂CH₂-CMe₃ or GCH₂CH₂-CH₂CH=CH₂ to give GCH₂CH₂• and Me₃C• or GCH₂CH₂• and CH₂=CHCH₂• radicals, respectively, have been found to be favored by 2.6 ± 1 kcal when G = Me₃Si, compared to when $G = H.^8$ Furthermore, in the pyrolytic cleavage of a C-C bond in (trimethylsilyl)cyclopropane, the activation enthalpy for the formation of the β diradical, Me₃SiCH(C·H₂)₂, is 5.4 kcal lower than that for the formation of the α,β diradical, Me₃Si CHCH₂-CH₂. These experiments also point to a stabilizing effect of about 3 kcal for a β -Me₃Si group on a primary radical, relative to that of a β -methyl group or a β -hydrogen atom.

[®] Abstract published in *Advance ACS Abstracts,* December 15, 1995. (1) Lambert, J. B. *Tetrahedron* **1990**, *46*, 2677 and references cited therein.

⁽²⁾ Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456, and references cited therein.

⁽³⁾ Engel, W.; Fleming, I.; Smithers, R. H. J. Chem. Soc., Perkin Trans. 1 **1986**, 1637.

⁽⁴⁾ Doncaster, A. M.; Walsh, R. J. Chem. Soc., Faraday Trans. 1 1976, 72, 2908.

⁽⁵⁾ Zhang, S.; Zhang, X.-M.; Bordwell, F. G. J. Am. Chem. Soc. 1995, 117, 603.

^{(6) (}a) Jackson, R. M.; Ingold, K. U.; Griller, D.; Nazran, A. S. *J. Am. Chem. Soc.* **1985**, *107*, 208. (b) Wilt, J. W.; Lusztyk, J.; Peeran, M.; Ingold, K. U. *J. Am. Chem. Soc.* **1988**, *110*, 281.

⁽⁷⁾ Auner, N; Walsh, R.; Westrup, J. Chem. Soc., Chem. Commun. 1986, 207.

⁽⁸⁾ Davidson, I. M. T.; Barton, T. J.; Hughes, K. J.; Ijadi-Maghsoodi, S.; Revis, A.; Paul, G. C. *Organometallics* **1987**, *6*, 644.

On the other hand, the BDE of the acidic C–H bond in 9-((trimethylsilyl)methyl)fluorene, 9-Me₃SiCH₂FlH, has been estimated to be nearly the same as that of the acidic C–H bond in 9-neopentylfluorene, 9-Me₃CCH₂FlH, which has led to the conclusion that the corresponding (tertiary) fluorenyl radicals, 9-Me₃SiCH₂Fl• and 9-Me₃CCH₂Fl•, are stabilized to nearly the same degree by hyperconjugation involving either a β -Me₃Si or a β -Me₃C group.¹⁰

In summary, kinetic and thermodynamic studies show that β -Me₃Si groups usually stabilize carbon-centered radicals, whereas α -Me₃Si groups show little or no tendency to do so. The thermodynamic studies indicate that the stabilizing effect of a β -Me₃Si group on a primary carbon-centered radical appears to be about 3 kcal, relative to β -methyl⁷ or β -hydrogen,⁸ but appears to be negligible toward β -Me₃C in fluorenyl radicals.¹⁰ In the present study, we have used β -Me₃Si-substituted ethyl thionacetates, Me₃SiCH₂CH₂C(=S)OEt, diethyl malonates, Me₃SiCH₂CH(COOEt)₂, and ethyl acetoacetates, Me₃SiCH₂CH(COOEt)COCH₃, to compare effects on BDEs of a β -Me₃Si group with those of β -alkyl groups.

Results and Discussion

For the study of the effect of a β -Me₃Si group on the acidity and BDE of a C–H bond, we first examined β -substituent effects on the acidic C–H bonds in ethyl thionacetates, GCH₂C(=S)OEt; a class of esters for which no p K_{HA} or BDE data on substituent effects has previously been obtained.¹¹ Our method is based on the combination of p K_{HA} values in DMSO with the oxidation potentials of their conjugate bases $E_{\text{ox}}(A^-)$ according to eq 1. The BDE differences (Δ BDEs) between the sub-

BDE (kcal) =
$$1.37 p K_{HA} + 23.1 E_{ox}(A^{-}) + 73.3$$
 (1)

stituted and parent weak acid can be approximated as radical stabilization energies in the absence of appreciable changes in ground state energies.

Ethyl thionacetate, which is readily prepared by the reaction of ethyl acetate with Lawesson's reagent,¹² has a p $K_{\rm HA}$ value 10.8 units (15 kcal) lower and a BDE value about 5 kcal lower than the corresponding values of ethyl acetate. The effects of β -substituents on the acidity and BDEs of the acidic C–H bonds of selected β -substituted ethyl thionacetates were therefore accessible and are summarized in Table 1.

Examination of Table 1 shows that the acidities of the ethyl thionacetates, $GCH_2C(=S)OEt$, vary over a narrow range for substituents where G is Me, Et, Me₃CCH₂, and Me₃SiCH₂ (0.14–0.82 kcal), showing that β -alkyl and β -Me₃Si groups have nearly the same small effects on carbanion stabilities. On the other hand, BDEs of the α -C–H bonds for these substituted thion esters, relative to that of the parent with G = H, were found to be substantially decreased, pointing to appreciable stabilizing effects on the corresponding radicals. For the alkyl groups, the BDEs decrease progressively from 4.7 to 4.4 to 3.8 kcal when G is changed from CH₃, to CH₃CH₂ to Me₃CCH₂, respectively, presumably due to decreasing

Table 1. pK_{HA} and BDE Values for the Acidic C–H Bonds in α -Substituted Ethyl Thionacetates, GCH₂C(=S)OEt, in DMSO

G	p <i>K</i> _{HA} ^a	$E_{\text{ox}}(\mathbf{A}^{-})^{b}$	BDE (kcal) ^c	ΔBDE
Н	19.2	-0.405	90.2	(0.0)
CH_3	18.8	-0.590	85.5	4.7
CH ₃ CH ₂	19.1	-0.590	85.8	4.4
t-BuCH ₂	18.7	-0.548	86.4	3.8
Me ₃ SiCH ₂	18.6	-0.680	83.1	7.1

^{*a*} Measured in DMSO (see Table 4). ^{*b*} Irreversible oxidation potentials measured by cyclic voltammetry in DMSO using platinum working and auxiliary electrodes and a Ag/AgI reference electrode with 0.1 M $Et_4N^+BF_4^-$ electrolyte and ferrocene/ferrocenium as a standard. ^{*c*} Calculated using eq 1.

Table 2. pK_{HA} and BDE Values for the Acidic C–H of 9-Substituted Fluorenes, 9-G-FlH

9-G	р <i>К</i> нА ^а	$E_{\text{ox}}(A^{-})^{a}$	BDE (kcal) ^c	ΔBDE
H (fluorene)	22.6 22.7	-1.050	80.0 76.2	(0.0)
<i>t</i> -BuCH ₂	20.3	-1.191	73.6	5.8 6.4
Me ₃ SiCH ₂	21.3^{b}	-1.135^{b}	76.3	3.7

^{*a*} All the data are from ref 16, except where specified. ^{*b*} pK_{HA}'s were measured in DMSO (see Table 4); irreversible oxidation potentials measured by cyclic voltammetry in DMSO using platinum working and auxiliary electrodes and a Ag/AgI reference electrode with 0.1 M Et₄N⁺BF₄⁻ electrolyte and ferrocene/ferrocenium as a standard. ^{*c*} BDEs were calculated using eq 1.

hyperconjugative effects. The approximately 5 kcal decrease in the BDE observed for α -methyl substitution onto ethyl thionacetate is similar in size to the BDE decreases observed for α -methyl substitution onto acetone,¹³ acetophenone,¹³ or nitromethane.¹⁴ Analysis of these effects in terms of eq 1 shows that all of these BDE decreases are caused by cathodic shifts in the $E_{ox}(A^-)$ values.¹⁵ A further cathodic shift of 0.132 V (3 kcal) was observed when the *t*-Bu group in *t*-BuCH₂CH₂C(=S)OEt was replaced by a Me₃Si group (Table 1). The BDE when $G = Me_3Si$ is 7.1 kcal lower than that of the parent, G = H, and 3.3 kcal lower than that of an alkyl model, with $G = Me_3Si$ group can be attributed to β -silyl hyperconjugation for this radical, as illustrated by **1a** \leftrightarrow **1b**.

$$\begin{array}{ccc} Me_{3}Si & S & He_{3}Si \\ H_{2}C-CH-C-OEt & & H_{2}C=CH-C-OEt \\ 1a & 1b \end{array}$$

This evidence for a sizable stabilizing effect of a β -Me₃-Si group on the radical provides support for the earlier kinetic and thermodynamic evidence.^{6–8} On the other hand, the β -*tert*-butyl group shows little or no stabilizing effect on the carbon radical, and this is contrary to the result seen from 9-neopentylfluorene.¹⁰

We have also examined the effect of the β -Me₃Si and β -*tert*-butyl group on fluorene (Table 2). The results summarized in Table 2 agree with those reported by Bausch and Gong except for the Δ BDE between 9-((trimethylsilyl)methyl)fluorene and fluorene. We have observed a Δ BDE of -3.7 (76.3 - 80.0) kcal instead the BDE of -7 (69 - 76) kcal reported. According to our results, the β -Me₃Si group has little or no effect on the

 ⁽⁹⁾ Conlin, R. T.; Kwak, Y.-W. Organometallics 1986, 5, 1025.
 (10) Bausch, M. J.; Gong, Y. J. Am. Chem. Soc. 1994, 116, 5963.

⁽¹¹⁾ A study of the acidity and BDE of the acidic C–H bonds in α -substituted ethyl acetates is precluded because the conjugate base of ethyl acetate [CH₂COOEt]⁻ is a strong base (pK_{HA} ca. 30) and is

 ⁽¹²⁾ Pedersen, B. S.; Scheibye, S.; Clausen, K.; Lawessen, S.-O. Bull.
 Soc. Chim. Belg. 1978, 87, 293.

⁽¹³⁾ Bordwell, F. G.; Harrelson, J. A., Jr. Can. J. Chem. 1990, 68, 1714.

 ⁽¹⁴⁾ Bordwell, F. G.; Satish, A. V. J. Am. Chem. Soc 1994, 116, 8885.
 (15) Bordwell, F. G.; Zhang, X.-M.; Filler, R. J. Org. Chem. 1993, 58, 6067.

 Table 3. pK_{HA} and BDE Values for the Acidic C-H

 Bonds in α-Substituted Diethyl Malonates and Ethyl

 Acetoacetates in DMSO

G	p <i>K</i> _{HA} ^a	$E_{\text{ox}}(A^{-})^{a}$	BDE (kcal) ^c	ΔBDE	
[GCH(COOEt) ₂]					
Н	16.4	-0.022	95.2	(0.0)	
CH_3	18.7	-0.352	90.8	4.4	
CH ₃ CH ₂	19.1	-0.346	91.5	3.7	
Me ₃ SiCH ₂	18.6 ^b	-0.480^{b}	87.3	8.2	
[GCH(COOEt)COCH ₃]					
Н	14.3^{b}	0.005^{b}	92.3	(0.0)	
CH ₃ CH ₂	16.4^{b}	-0.265^{b}	89.6	3.7	
Me ₃ SiCH ₂	15.8^{b}	-0.420^{b}	85.2	7.1	

 a Reference 17. b pK_{HA}'s were measured in DMSO (see Table 4); irreversible oxidation potentials measured by cyclic voltammetry in DMSO using platinum working and auxiliary electrodes and a Ag/AgI reference electrode with 0.1 M Et₄N⁺BF₄⁻ electrolyte and ferrocene/ferrocenium as a standard. c BDEs were calculated using eq 1.

stability of fluorenyl radical, but the β -tert-butyl group appears to have a stabilizing effect relative to a β -Me group. We believe, however, that the apparent β -tertbutyl stabilization is deceptive and is due to a steric effect rather than an electronic effect, namely a relief of steric strain upon the formation of the 9-neopentylfluorenyl radical. This effect becomes smaller in ((trimethylsilyl)methyl)fluorene because the Si-C bonds are longer than C-C bonds. These results were augmented by studies of the effects of β -Me₃Si substituents in diethyl malonates and ethyl acetoacetate (Table 3).

The alkyl effects in the α -position on acidities in the diethyl malonates and ethyl acetoacetates are subject to chelation and conformational effects, whereas the alkyl effects on the BDEs are not.¹⁷ The effects of alkyl and β -Me₃SiCH₂ substituents on BDEs in Tables 1 and 3 are remarkably similar. In Table 1 the effects of introducing Me, Et, and Me₃SiCH₂ groups for an acidic hydrogen atom in ethyl thionacetates lead to decreases in BDEs of the acidic C–H bond of 4.7, 4.4, and 7.1 kcal, respectively. In Table 3 the effects of introducing Me, Et, and Me₃-SiCH₂ groups for an acidic hydrogen atom in diethyl malonates lead to decreases in BDEs of the acidic C-H bond of 4.4, 3.7, and 8.2 kcal, respectively, and the effects of introducing Et and Me₃SiCH₂ groups for an acidic hydrogen atom in ethyl acetoacetates lead to decreases in BDEs of the acidic C-H bond of 3.7 and 7.1 kcal, respectively. In Table 1 the effects of introducing Et or *t*-BuCH₂ groups for an acidic hydrogen atom on the BDEs of the acidic C–H bond differ slightly (4.4 and 3.8 kcal, respectively).

Summary and Conclusions. Substitution of the Me_3SiCH_2 group at the acidic site of ethyl thionacetate, diethyl malonate, and ethyl acetoacetate causes decreases in BDEs of 7–8 kcal relative to the BDE of the parent esters and decreases of about 4 kcal relative to the BDEs of the ethyl-substituted esters. These BDE decreases are rationalized in terms of hyperconjugation effects that are larger for the Me_3SiCH_2 group by 3–4 kcal than for alkyl groups, including a Me_3CCH_2 group in an ethyl thionacetate. In contrast, the decrease in BDE for a 9- Me_3SiCH_2 group in fluorene was only 3.7 kcal compared to 6.4 kcal for a Me_3CCH_2 group. This reversal is believed to be associated with the larger steric effect in 9-neopentylfluorene than in the Me_3SiCH_2 analogue. In conclusion,

Table 4. Summary of pK_{HA} Measurements^a

	0 1		
acid	indicator $(pK_{HIn})^b$	р <i>К</i> _{НА}	std
CH ₃ C(S)OEt	CNAH (18.9)	19.22	0.01
	FMY30 (18.1)	19.10	0.02
CH ₃ CH ₂ C(S)OEt	CNAH (18.9)	18.82	0.03
	PFH (17.9)	18.77	0.04
CH ₃ CH ₂ CH ₂ C(S)OEt	CNAH (18.9)	19.15	0.01
	PFH (17.9)	18.90	0.05
t-BuCH ₂ CH ₂ C(S)OEt	CNAH (18.9)	18.69	0.01
	PFH (17.9)	18.75	0.05
Me ₃ SiCH ₂ CH ₂ C(S)OEt	CNAH (18.9)	18.60	0.01
	PFH (17.9)	18.59	0.03
	FMY30 (18.1)	18.63	0.01
Me ₃ SiCH ₂ CH(COOEt) ₂	FMY30 (18.1)	18.57	0.01
	CNAH (18.9)	18.65	0.02
CH ₃ C(O)CH(CH ₂ SiMe ₃)-	MCLPHF (16.8)	15.84	0.05
COOEt	MCLPHF (16.8)	15.80	0.04
CH ₃ C(O)CH(CH ₂ CH ₃)-	MCLPHF (16.8)	16.42	0.07
COOEt	MCLPHF (16.8)	16.41	0.05
CH ₃ C(O)CH ₂ COOEt	PSFH (15.4)	14.37	0.01
	FMY330 (13.8)	14.23	0.01
Me ₃ SiCH ₂ FlH	<i>m</i> -FC ₆ H ₄ CH ₂ SO ₂ Ph	21.31	0.02
	(21.7)		
(standard acid)	m-CF ₃ C ₆ H ₄ CH ₂ SO ₂ Ph	21.30	0.01
	(21.7)		

^a Measured by the overlapping indicator method.²⁰ ^b Names of indicators: CNAH, 4-chloro-2-nitroaniline; FMY30, 2-(phenylsulfonyl)fluorene; PFH, 9-phenylfluorene; MCLDHF, 9-(*m*-chlorophenyl)fluorene; PSFH, 9-(phenylthio)fluorene.

 β -trimethylsilyl stabilizing effects on carbon-centered radicals can be as large as 4.5 kcal, but there is little β -silyl effect on carbanions.

Experimental Section

The p K_{HA} measurements in Me₂SO were carried out as described in earlier publications;² details are given in Table 4. Cyclic voltammetry was carried out in the manner previously described¹⁸ using platinum working and auxiliary electrodes and a Ag/AgI reference electrode with 0.1 M Et₄N⁺BF₄⁻ electrolyte and ferrocene/ferrocenium as a standard. NMR spectra were recorded on a Varian GEMINI 300 or VRX 300.

Ethyl thionacetate CH₃C(=S)OEt, ethyl thionpropionate CH₃CH₂C(=S)OEt, and ethyl thionbutyrate CH₃CH₂CH₂C-(=S)OEt were prepared from the reaction of the appropriate ethyl ester with Lawesson's reagent (Aldrich).¹² A typical procedure is as follows.

Lawesson's reagent, 10 g, and an ethyl ester, 25 mL, were mixed in a 50 mL round-bottom flask. The two-phase mixture was refluxed, during which time aliquots were taken and analyzed by GLC, until the concentration of thionester failed to increase. This usually took about 2-4 days. The volatiles were transferred into another round-bottom flask under vacuum, leaving the solid materials behind. The thionester solution was then concentrated to 40-60% by fractional distillation, and the pure compound (>98%) was obtained by preparative GLC. The crude yield was between 30 and 50%.

Ethyl thionbutyrate CH₃CH₂CH₂C(=S)OEt appears to be a new compound. Its spectroscopic data are as follows: ¹H NMR (CDCl₃) δ 0.942 (3H, t, CH₃), 1.386 (3H, t, CH₃), 1.758 (2H, hex, CH₂), 2.687 (2H, t, CH₂), 4.480 (2H, q, CH₂); mass spectrum *m*/*z* (relative abundance) 132 (100), 89 (25.3), 87 (29.4), 76 (39.2), 71 (76.9), 55 (31.5); high-resolution MS calcd for C₆H₁₂OS 132.0609, found 132.0618.

Ethyl 3-(Trimethylsilyl)thionpropionate [(Me₃Si)CH₂-CH₂C(=S)OEt]. Lawesson's reagent (1.2 g, 3 mmol, 6 mequiv of sulfur) and 0.8 g (4.6 mmol) of ethyl 3-(trimethylsilyl)propionate, prepared according to the literature procedure,¹⁹

⁽¹⁶⁾ Bordwell, F. G.; Zhang, X.-M. J. Am. Chem. Soc. **1994**, 116, 973.

⁽¹⁷⁾ Zhang, X.-M.; Bordwell, F. G. J. Phys. Org. Chem. 1994, 7, 751.

⁽¹⁸⁾ Bordwell, F. G.; Cheng, J.-P.; Ji, G.-Z.; Satish, A. V.; Zhang, X.-M. J. Am. Chem. Soc. **1991**, *113*, 9790.

⁽¹⁹⁾ Sommer, L. H.; Marans, N. S. J. Am. Chem. Soc. 1950, 72, 1937.

were mixed in 30 mL of toluene. The mixture was refluxed for 3 days, and the final ratio of ester *vs* thionester was about 40:60, according to GLC analysis. The mixture was then passed through a silica gel column with methylene chloride as the elution solvent. The desired thionester was eluted first. The early fractions were combined and concentrated by removing most of the solvent. Ethyl 3-(trimethylsilyl)thionpropionate, 100 mg (11% yield), was obtained by preparative GLC (purity >98%): ¹H NMR (CDCl₃) δ 0.018 (9H, s, Si(CH₃)₃), 0.983 (2H, m, CH₂), 1.404 (3H, t, CH₃), 2.678 (2H, m, CH₂), 4.507 (2H, q, CH₂); mass spectrum m/z (relative abundance) 190 (1.9), 175 (68.2), 147 (41.4), 129 (17.0), 91 (29), 73 (100); high-resolution MS calcd for C₈H₁₈OSSi 190.0848, found 190.0835.

Ethyl 3-*tert*-Butyl)propionate and Ethyl 3-*tert*-Butylthionpropionate. *tert*-Butylacetylene (25 g, 0.3 mol) and 300 mL of anhydrous Et_2O were placed in a 500 mL threeneck flask, and 120 mL of butyllithium (2.5 M in hexanes) was added dropwise at -78 °C. After stirring for 20 min, 30 g (0.28 mol) of ethyl chloroformate was added slowly. The solution was gradually warmed, and a white solid precipitated. The organic solution was separated from the solid, washed with 50 mL of H₂O, and then dried over anhydrous Na₂SO₄. After removal of the volatiles, distillation at 80 °C/0.8 mmHg yielded 40 g of ethyl 3-*tert*-butylpropynoate, *t*-BuC=CC(=O)OEt (yield 81%). Hydrogenation of the ethyl 3-*tert*-butylpropynoate in ethanol with Pd/C catalyst gave a quantitative yield of ethyl 3-*tert*-butylpropionate, *t*-BuCH₂CH₂C(=O)OEt. Refluxing the *t*-BuCH₂CH₂C(=O)OEt with Lawessen's reagent in toluene for 24 h produced ethyl 3-*tert*-butylthionpropionate (70% yield). A pure (>98%) sample was obtained by preparative GLC: ¹H NMR (CDCl₃) δ 0.90 (s, 9H), 1.38 (t, 3H), 1.63 (m, 2H), 2.69 (m, 2H), 4.48 (q, 2H); high-resolution MS calcd for C₉H₁₈OS 174.1078, found 174.1079.

9-((Trimethylsilyl)methyl)fluorene was prepared from the reaction of lithium fluorenide with (chloromethyl)trimethylsilane in THF and purified by recrystallization from ethanol. Colorless crystalline needles were obtained, and their ¹H NMR spectrum and mp were found to be identical to those reported by Bausch and Gong.¹⁰ Repeated cyclic voltammetry experiments on the oxidation potential of 9-((trimethylsilyl)methyl)fluorenyl anion gave the $E_{0x}(A^-)$ value as shown in Table 2; the difference of the oxidation potentials between 9-((trimethylsilyl)methyl)fluorenyl anion and fluorenyl anion is 0.085 V, which is 0.135 V smaller than that reported earlier.¹⁰

Diethyl 2-((trimethylsilyl)methyl)malonate was prepared from the reaction of (trimethylsilyl)methyl chloride with diethyl malonate and pyridine in THF and purified by fractional distillation.

Ethyl 2-((trimethylsilyl)methyl)acetoacetate and ethyl 2-ethylacetoacetate were purchased from Aldrich and purified by fractional distillation.

Acknowledgment. We are grateful to the National Science Foundation for support of this research.

JO951506G

⁽²⁰⁾ Matthews, W. S.; Bares, J. E.; Bartmess, J. E.; Bordwell, F. G.; Cornforth, F. J.; Drucker, G. E.; Margolin, Z.; McCallum, R. J.; McCollum, G. J.; Vanier, N. R. *J. Am. Chem. Soc.* **1975**, *97*, 7006–7014.